ring is planar. The atom $\mathrm{N}(2)$, cis with respect to $\mathrm{C}(2)$ and $\mathrm{C}(4)$ and trans with respect to $\mathrm{C}(1)$, confirms the DL-form of the histidine moiety in the present work (Bennett et al., 1970). The C(3)-C(2) conformation is such that $\mathrm{C}(1)$ is trans with respect to $\mathrm{C}(4)$ and $\mathrm{N}(1)$ is gauche.

The bond angles involving heavy atoms in the title compound are comparable with those in histidine dihydrochloride and histidine hydrochloride monohydrate. There are, in general, three single bonds in the histidine moiety which permit conformational freedom: $\mathrm{C}(4)-\mathrm{C}(3), \mathrm{C}(3)-\mathrm{C}(2)$ and $\mathrm{C}(2)-\mathrm{C}(1)$. A comparison of the torsion angles about these bonds in the histidine molecule in title compound, and in l-histidine dihydrochloride and l-histidine hydrochloride monohydrate, is given in Table 2. The difference in the torsion angle $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)-$ $\mathrm{C}(1)$ of about $4 \cdot 5^{\circ}$ between the present work and L-histidine dihydrochloride is consistent with an 'open' conformation; the molecular conformation in L-histidine dihydrochloride monohydrate is 'closed' with the torsion angle about $\mathrm{C}(2)-\mathrm{C}(3)$ equal to -52.8° (Oda \& Koyama, 1972).

The crystal-packing diagram of dL-histidinium dinitrate is shown in Fig. 2. Ribbons of histidine cations, each straddling a glide plane, lie essentially in parallel channels along the crystallographic a axis. The head-to-tail alignment of the molecules is stabilized by a series of hydrogen bonds [$\mathrm{N}(1)$ $\mathrm{H}(1) \cdots \mathrm{O}(12), \mathrm{N}(2)-\mathrm{H}(7) \cdots \mathrm{O}(22), \mathrm{N}(1)-\mathrm{H}(2) \cdots \mathrm{O}(21)$ etc.] running approximately parallel to b. The hydrogen-bond distances and their angles are given in Table 2. All protons attached to N and O atoms are involved in hydrogen bonding. However, there
seems to be a bifurcated hydrogen bond between the carboxylate $\mathrm{O}(2)$ atom and two O atoms $[\mathrm{O}(21)$ and $O(231)]$ of the same nitrate group. The thermal parameters of $\mathrm{O}(231), \mathrm{O}(2)$ and $\mathrm{H}(11)$ involved in this hydrogen bond are relatively high (0.0963 , $0 \cdot 1105$ and $0 \cdot 16 \AA^{2}$, respectively). Similarly there is one more bifurcated hydrogen bond between the amino-group N atom and two O atoms $[\mathrm{O}(21)$ and $O(22)]$ of the same nitrate group.

The authors thank Professors K. S. Chandrasekaran and H. Manohar for their keen interest and encouragement.

References

Bennett, I., Davidson, A. G. H., Harding, M. M. \& Morelle, I. (1970). Acta Cryst. B26, 1722-1729.

Cadlin, R. \& Harding, M. M. (1970). J. Chem. Soc. A, pp. 384-394.
Donohue, J. \& Caron, A. (1964). Acta Cryst. 17, 1178-1180.
Donohue, J., Lavine, L. R. \& Rollett, J. S. (1956). Acta Cryst. 9, 655-662.
Edington, P. \& Harding, M. M. (1974). Acta Cryst. B30, 204-206.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Kistenmacher, T. J. \& Sorrell, T. (1973). Cryst. Struct. Commun. 2, 673-679.
Kistenmacher, T. J. \& Sorrell, T. (1974). J. Cryst. Mol. Struct. 4, 419-432.
Madden, J. J., McGandy, E. L. \& Seeman, N. C. (1972). Acta Cryst. B28, 2377-2382.
Madden, J. J., McGandy, E. L., Seeman, N. C., Harding, M. M. \& Hoy, A. (1972). Acta Cryst. B28, 2382-2389.

Oda, K. \& Koyama, H. (1972). Acta Cryst. B28, 639-642.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 1423-1426

Structure of a p-Bromobenzoyl Derivative of Amyrinol*

By A. C. Gomes, \dagger G. Biswas, \dagger A. K. Barua, \ddagger S. Ray \ddagger and A. Banerjee $\dagger \S$
Biophysics Department and Chemistry Department, Bose Institute, Calcutta-700 054, India
and Y. IItaka
University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received 16 June 1990; accepted 12 October 1990)

Abstract.
 5,6,9,9-Tetramethyl-10-oxatricyclo-

 [6.2.2.0 ${ }^{1,6}$]dodec-2-yl p-bromobenzoate, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{BrO}_{3}$,[^0]0108-2701/91/071423-04\$03.00
$M_{r}=420 \cdot 9$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=7.038(1), b$ $=23.924$ (2), $c=24.84$ (1) $\AA, V=4182.5 \AA^{3}, Z=8$, $D_{x}=1.336 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu=$ $26.2 \mathrm{~cm}^{-1}, F(000)=1760, T=288 \mathrm{~K}$, final $R=0.053$ for 2830 reflections. The compound crystallizes with two molecules in the asymmetric unit where each molecule has two cyclohexane rings of which one is
© 1991 International Union of Crystallography

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters of non- H atoms with their e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
Molecule A				
Brl	0.04601 (24)	0.21923 (6)	0.56333 (6)	0.0984
C2	-0.1150 (17)	0.1566 (4)	0.5545 (4)	0.0590
C3	-0.3108 (19)	$0 \cdot 1658$ (5)	0.5498 (5)	0.0738
C4	-0.0447 (17)	$0 \cdot 1048$ (4)	0.5511 (4)	0.0585
C5	-0.4289 (17)	$0 \cdot 1212$ (4)	0.5404 (4)	0.0595
C6	-0.1620 (16)	0.0611 (4)	0.5404 (4)	0.0512
C7	-0.3600 (16)	0.0694 (4)	0.5354 (4)	0.0481
C8	-0.4925 (17)	0.0226 (4)	0.5228 (4)	0.0521
09	-0.6614 (10)	0.0261 (3)	0.5258 (3)	0.0654
010	-0.3996 (9)	-0.0236 (3)	0.5076 (3)	0.0662
C11	-0.5159 (15)	-0.0695 (4)	0.4855 (4)	0.0520
C 12	-0.5328 (20)	-0.1141 (6)	0.5285 (5)	0.0798
C13	-0.3409 (28)	-0.1459 (8)	0.5390 (6)	0.0966
C14	-0.2647 (19)	-0.1692 (4)	0.4858 (6)	0.0789
Cl 5	-0.2292 (14)	-0.1246 (4)	0.4441 (5)	0.0558
C16	-0.1882 (17)	-0.1531 (5)	0.3889 (6)	0.0800
C17	-0.3163 (17)	-0.1324 (5)	0.3434 (5)	0.0703
C18	-0.2988 (23)	-0.0689 (6)	0.3425 (6)	0.0959
C19	-0.3842 (26)	-0.0425 (5)	0.3947 (5)	0.0758
C20	-0.4177 (13)	-0.0902 (4)	0.4353 (4)	0.0490
021	-0.5598 (9)	-0.1277 (2)	0.4136 (3)	$0-0517$
C22	-0.5290 (17)	-0.1460 (5)	0.3595 (4)	0.0661
C23	-0.0871 (29)	-0.2051 (6)	0.4984 (9)	0.1526
C24	-0.0645 (18)	-0.0868 (6)	0.4588 (6)	0.0838
C25	-0.5578 (21)	-0.2105 (5)	0.3598 (7)	0.0835
C26	-0.6706 (24)	-0.1185 (7)	0.3212 (6)	0.1119
Molecule B				
Brl	0.14497 (26)	-0.03417 (6)	$0 \cdot 65858$ (7)	$0 \cdot 1103$
C2	0.2932 (21)	0.0296 (5)	0.6707 (5)	0.0756
C3	0.4946 (20)	0.0219 (4)	0.6772 (6)	0.0813
C4	0.2191 (17)	0.0799 (5)	0.6730 (5)	0.0610
C5	0.5949 (24)	0.0685 (5)	0.6848 (7)	0.0773
C6	0.3283 (17)	0.1275 (4)	0.6803 (4)	0.0608
C7	0.5289 (16)	0.1208 (4)	0.6887 (4)	0.0480
C8	0.6476 (17)	0.1704 (4)	0.6971 (4)	0.0539
09	0.8224 (11)	0.1661 (3)	0.6990 (3)	0.0717
010	0.5562 (10)	0.2170 (3)	0.7031 (3)	0.0621
Cll	0.6596 (17)	0.2694 (4)	0.7067 (6)	0.0526
C12	0.6987 (18)	0.2847 (5)	0.7683 (5)	0.0703
C13	0.5208 (19)	0.2995 (5)	0.7972 (4)	0.0723
C14	0.4288 (17)	0.3483 (4)	0.7706 (4)	0.0603
C15	0.3671 (14)	0.3351 (4)	0.7108 (4)	0.0501
C16	$0 \cdot 3002$ (19)	0.3914 (5)	0.6805 (8)	0.0807
C17	0.4169 (22)	$0 \cdot 4002$ (5)	0.6309 (5)	0.0772
C18	0.3938 (22)	$0 \cdot 3475$ (6)	0.5971 (5)	0.0926
C19	0.4986 (20)	0.2987 (5)	0.6225 (5)	0.0658
C20	0.5474 (15)	0.3142 (3)	0.6790 (4)	0.0463
021	0.6867 (9)	0.3597 (3)	0.6782 (3)	0.0485
C22	0.6381 (17)	0.4068 (5)	0.6453 (5)	0.0672
C23	0.2550 (21)	0.3694 (6)	0.8043 (6)	0.0917
C24	0.2074 (15)	0.2930 (3)	0.7080 (6)	0.0723
C25	0.6676 (22)	0.4584 (4)	0.6766 (6)	0.0876
C26	0.7594 (30)	$0 \cdot 4088$ (9)	0.5952 (7)	0.1048

in the boat form (with a bridge) whereas the other, without a bridge, is in the chair form. The dihedral angle between the benzene plane and the plane of the carboxylate group is $12.8(10)^{\circ}$ in molecule A and $5.9(10)^{\circ}$ in molecule B.

Introduction. The wood distillate of the plant Amyrsis is a rich source of essential oils reported to be fungicidal (Maruzzella \& Balker, 1959), antibacterial (Maruzzella \& Bramnick, 1961) and toxic (Jenner, Hagan, Taylor, Cook \& Fitzhugh, 1964). Six sesquiterpenes have recently been identified in the oil of Amyrsis balsamifera by gas chromatography/ mass spectroscopy methods (Rohmer, Schwartz \&

Table 2. Bond distances (\AA) of non- H atoms with e.s.d.'s in parentheses

	Molecule A	Molecule B		Molecule A	Molecule B
$\mathrm{Brl}-\mathrm{C} 2$	$1.892(11)$	$1.873(12)$	$\mathrm{C} 20-\mathrm{C} 19$	$1.541(16)$	$1.491(16)$
$\mathrm{C} 2-\mathrm{C} 4$	$1.337(14)$	$1.312(16)$	$\mathrm{C} 1-\mathrm{C} 13$	$1.573(24)$	$1.487(18)$
$\mathrm{C} 6-\mathrm{C} 4$	$1.358(15)$	$1.386(16)$	$\mathrm{C} 14-\mathrm{C} 13$	$1.531(2)$	$1.491(1)$
$\mathrm{C} 7-\mathrm{C} 6$	$1.413(16)$	$1.436(17)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.506(16)$	$1.580(14)$
$\mathrm{C} 7-\mathrm{C} 5$	$1.335(14)$	$1.339(15)$	$\mathrm{C} 14-\mathrm{C} 23$	$1.549(23)$	$1.565(18)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.491(14)$	$1.466(15)$	$\mathrm{C} 15-\mathrm{C} 24$	$1.515(16)$	$1.511(13)$
$\mathrm{C} 3-\mathrm{C} 5$	$1.374(16)$	$1.32(18)$	$\mathrm{C} 1-\mathrm{C} 16$	$1.559(17)$	$1.612(18)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.401(18)$	$1.439(20)$	$\mathrm{O} 21-\mathrm{C} 22$	$1.429(13)$	$1.434(13)$
$\mathrm{O} 10-\mathrm{C} 11$	$1.475(12)$	$1.453(12)$	$\mathrm{C} 19-\mathrm{C} 18$	$1.562(20)$	$1.520(19)$
$\mathrm{O} 10-\mathrm{C} 8$	$1.339(12)$	$1.295(12)$	$\mathrm{C} 18-\mathrm{C} 17$	$1.525(19)$	$1.524(18)$
$\mathrm{O} 9-\mathrm{C} 8$	$1.1941(14)$	$1.236(14)$	$\mathrm{C} 26-\mathrm{C} 22$	$1.526(20)$	$1.510(22)$
$\mathrm{C} 11-\mathrm{C} 20$	$1.511(14)$	$1.498(15)$	$\mathrm{C} 2-\mathrm{C} 17$	$1.584(17)$	$1.605(19)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.512(16)$	$1.598(19)$	$\mathrm{C} 22-\mathrm{C} 25$	$1.556(17)$	$1.474(1)$
$\mathrm{C} 20-\mathrm{C} 15$	$1.576(13)$	$1.576(14)$	$\mathrm{C} 17-\mathrm{C} 16$	$1.528(18)$	$1.496(22)$
$\mathrm{O} 21-\mathrm{C} 20$	$1.448(11)$	$1.466(11)$			

Table 3. Bond angles (${ }^{\circ}$) with e.s.d.'s in parentheses

	Molecule A	Molecule B
$\mathrm{Brl}-\mathrm{C} 2-\mathrm{C} 3$	118.3 (0.8)	117.6 (0.8)
$\mathrm{Brl}-\mathrm{C} 2-\mathrm{C} 4$	112.3 (0.9)	122.2 (1-1)
C3-C2-C4	120.4 (1-1)	$120 \cdot 3$ (1-1)
C2-C3-C5	119.1 (1-1)	115.5 (1-1)
C3-C5-C7	121-1 (1-1)	127.5 (1.5)
C5-C7-C6	118.7 (0.9)	115.5 (1-1)
C7-C6-C4	120.5 (0.9)	118.2 (1.0)
C6-C4-C2	120.0 (1-1)	122.6 (1.2)
C6-C7-C8	122.0 (0.8)	119.4 (0.9)
C7-C8-O9	123.8 (0.9)	120.3 (0.9)
O9-C8-O10	124.2 (0.4)	124.3 (1.0)
$\mathrm{Cl1}-\mathrm{O} 10-\mathrm{C} 8$	$116.7(0 \cdot 8)$	120.0 (0.8)
$\mathrm{C} 12-\mathrm{Cl1}-\mathrm{C} 20$	112.8 (0.8)	111.5 (0.9)
$\mathrm{Cl1}-\mathrm{Cl2-Cl3}$	113.0 (1.1)	111.5 (1.0)
$\mathrm{Cl2-C13-C14}$	109.5 (1-2)	109.8 (1.0)
C13-C14-C15	113.2 (1.0)	112.3 (0.8)
C20-C15-C14	109.0 (0.9)	108.2 (0.8)
$\mathrm{C} 20-\mathrm{C15-C16}$	$105 \cdot 1$ (0.9)	$105 \cdot 5(0.9)$
C15-C16-C17	113.6 (0.9)	110.0 (1.0)
C16-C17-C22	107.7 (1.0)	$111.2(1 \cdot 1)$
C16-C17-C18	106.6 (1.0)	$106 \cdot 1$ (1-1)
C18-C17-C22	106.5 (1.0)	108.0 (1-1)
C19-C18-C17	$111 \cdot 1$ (1.1)	110.8 (1-1)
$\mathrm{C} 20-\mathrm{C19-C18}$	107.6 (1.0)	108.2 (0.9)
C19-C20-021	108.7 (0.9)	109.0 (0.8)
$\mathrm{Cl} 9-\mathrm{Cl} 0-\mathrm{Cl} 5$	110.4 (1.0)	111.4 (0.9)
$\mathrm{Cl1}-\mathrm{C} 20-\mathrm{Cl5}$	$108 \cdot 1$ (0.7)	115.0 (0.9)
$\mathrm{C} 20-\mathrm{O} 21-\mathrm{C} 22$	115.8 (0.8)	115.7 (0.7)
$\mathrm{O} 21-\mathrm{C} 22-\mathrm{Cl} 7$	111.8 (1.0)	$106 \cdot 3$ (0.8)
$\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 26$	110.8 (1.0)	111.0 (1-1)
C25-C22-C26	$110 \cdot 2(1 \cdot 1)$	$109 \cdot 2(1 \cdot 1)$

Anton, 1977). Other compounds such as amyrol, $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$, amyrolin and a coumarin, m.p. $430-432 \mathrm{~K}$, $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3}$, have also been isolated. The crystals of the parent compound amyrinol were found to be silky, flaky and unsuitable for X-ray analysis, hence a bromine derivative which is crystalline (Ray, 1986) was investigated to establish its conformation.

Experimental. Crystals of the title compound (received courtesy of Dr A. K. Barua, Bose Institute, India) were obtained from aqueous methanol with two molecules per asymmetric unit in the form of transparent needles at room temperature, dimensions $0.31 \times 0.24 \times 0.13 \mathrm{~mm}$. Lattice parameters were determined from 15 intermediate axial reflections in the range $17<2 \theta<38^{\circ}$.

Three standard reflections monitored periodically had no significant intensity variation. 2836 [2406

Table 4. Some selected torsional angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

	Molecule A	Molecule B
C5-C7-C8-O9	- 13.48 (1.58)	2.64 (1.76)
C5-C7-C8-O10	166.34 (0.98)	-176.07 (1.13)
$\mathrm{Cl1}-\mathrm{Ol0}-\mathrm{C8}-\mathrm{C} 7$	- 170.14 (0.78)	- 174.41 (0.88)
$\mathrm{Cl1}-\mathrm{Ol0}-\mathrm{C} 8-\mathrm{O} 9$	9.64 (1.42)	6.94 (1.55)
$\mathrm{C} 8-\mathrm{Ol0}-\mathrm{Cl1-C12}$	- $104.08(0.98)$	-93.49 (1.11)
$\mathrm{C} 8-\mathrm{O} 10-\mathrm{Cl1}-\mathrm{C} 20$	134.12 (0.84)	143.94 (0.92)
$\mathrm{OlO}-\mathrm{ClI}-\mathrm{Cl2}-\mathrm{Cl} 3$	-70.17 (1.29)	-68.89 (1.21)
$\mathrm{Ol0}-\mathrm{Cl1}-\mathrm{C} 20-\mathrm{Cl} 5$	72.27 (0.98)	74.09 (1.07)
$\mathrm{Cl1}-\mathrm{Cl} 2-\mathrm{Cl} 3-\mathrm{Cl} 4$	- 53.94 (1.55)	- 59.24 (1.26)
$\mathrm{Cl1}-\mathrm{C} 20-\mathrm{Cl5}-\mathrm{Cl} 4$	49.14 (1.12)	48.91 (1.10)
$\mathrm{Cl} 2-\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{C} 23$	-174.51 (1.26)	-173.00 (0.99)
$\mathrm{Cl} 2-\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{Cl} 5$	59.04 (1.53)	62.73 (1.19)
$\mathrm{Cl} 3-\mathrm{Cl4}-\mathrm{Cl} 5-\mathrm{C} 20$	- 55.50 (1.31)	- 55.63 (1.09)
Cl3-C14-C15-C16	- 169.78 (1.10)	- 170.76 (0.96)
$\mathrm{Cl} 4-\mathrm{Cl} 5-\mathrm{Cl} 6-\mathrm{Cl} 7$	125.95 (1.06)	122.67 (1.10)
C14-C15-C20-C19	177.51 (0.95)	177.78 (0.86)
C16-C15-C14-C23	66.69 (1.37)	64.92 (1.18)
$\mathrm{C} 20-\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 23$	-179.03 (1.09)	- 179.95 (0.87)
C18-C17-C16-C15	53.53 (1.31)	56.53 (1.37)
$\mathrm{C} 22-\mathrm{Cl} 7-\mathrm{Cl} 6-\mathrm{Cl} 5$	-60.47 (1.23)	-60.64 (1.36)
$\mathrm{Cl} 5-\mathrm{C} 20-\mathrm{C19-C18}$	54.01 (1.25)	52.26 (1.20)
$\mathrm{C} 20-\mathrm{C19-C18-C17}$	12.37 (1.50)	14.57 (1.42)
$\mathrm{C} 20-\mathrm{Cl}-\mathrm{Cl}-\mathrm{Cl} 7$	9.19 (1.22)	5.85 (1.32)
$\mathrm{Cl} 6-\mathrm{Cl} 7-\mathrm{C} 18-\mathrm{Cl} 9$	-66.35 (1.36)	-71.57 (1.37)
C22-C17-C18-C19	48.47 (1.38)	47.77 (1.37)
$\mathrm{C} 22-\mathrm{O} 21-\mathrm{C} 20-\mathrm{Cl} 9$	49.72 (1.09)	51.07 (1.07)
$\mathrm{C} 26-\mathrm{C} 22-\mathrm{C} 17-\mathrm{Cl} 8$	56.51 (1.33)	57.06 (1.44)
C25-C22-C17-C18	178.67 (1.05)	178.19 (1.05)
$\mathrm{C} 22-\mathrm{O} 21-\mathrm{C} 20-\mathrm{Cl1}$	167.33 (0.77)	169.00 (0.82)

Fig. 1. Chemical diagram of the molecule.
with $I>3 \sigma(I)$] unique reflections were collected on a CAD-4 diffractometer with Ni-filtered $\mathrm{Cu} K \alpha$ radiation in $2 \theta-\omega$ step-scan mode. $2 \theta_{\text {max }}=120^{\circ}$. Ranges of h, k, l were -15 to $15,-5$ to $5,-2$ to 17 . Data were corrected for Lorentz-polarization factors but not for absorption. The structure was solved by mULTAN78 (Main, Hull, Lessinger, Germain, Declercq \& Woolfson, 1978) and refined by fullmatrix least squares with SHELX 76 (Sheldrick, 1976) on F. All the H atoms were located from ΔF syntheses and refined isotropically. All non-H atoms were refined anisotropically. There are two molecules in the asymmetric unit. Final $R=0.053$ and $w R=$ $0.053 ; w=1 / \sigma^{2}\left(F_{o}\right) ; \Delta \rho$ peaks are 0.3 to $-0.2 \mathrm{e} \AA^{-3}$, $(\Delta / \sigma)_{\max }=0.65$. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

Discussion. Final atomic parameters are given in Table 1.* The bond lengths, bond angles and some dihedral angles of the molecules are in Tables 2, 3 and 4. Fig. 1 shows a chemical diagram of the title compound, Fig. 2 gives a comparative view of the two independent molecules as revealed from the X-ray study and Fig. 3 presents a packing diagram down the a axis.

Each molecule has two cyclohexane rings of which one (with a bridge) is in the boat form and the other

[^1]

Molecule A

Molecule B
Fig. 2. Comparative stereoviews of conformations of the two molecules as revealed by X-ray study.

Fig. 3. Packing diagram of the molecules down the a axis with intermolecular short contacts (\AA).
(without a bridge) is in the chair form. In the cyclohexane ring having the chair conformation, the distance between the planes containing alternate atoms is about $0.433 \AA$. In the cyclohexane ring having the boat conformation, the atoms forming the 'bottom' of the boat are not exactly coplanar. The deviations of C18 from the planes passing through C16, C15, C19 in molecule A and in molecule B are 0.296 (6) and $0 \cdot 286$ (5) \AA, respectively.

In molecule A, Brl and O 9 are on the opposite sides of the benzene plane, the distances of $\mathrm{Brl}, \mathrm{O} 9$, O10 from this plane being $-0.106(1), 0.124$ (7) and -0.354 (7) \AA, respectively. In molecule B, however, Br 1 and O 9 are on the same side of the benzene plane, the distances of $\mathrm{Brl}, \mathrm{O} 9, \mathrm{O} 10$ from this plane being $-0.035(2),-0.053(8)$ and $0.173(7) \AA$, respectively. The dihedral angle between the benzene plane and the plane of the ($\mathrm{C} 8, \mathrm{O}, \mathrm{O} 10$) group is $12.8(10)^{\circ}$ in molecule A and $5.9(10)^{\circ}$ in molecule B.

Many intramolecular short contacts are present but the intermolecular forces are apparantly small [shortest contact $\mathrm{C} \cdots \mathrm{O}, 3.43$ (2) \AA]. This implies that the molecules are somewhat loosely bound to each other. It is therefore not surprising that the melting point of the compound is rather low (observed m.p. 395 K).

References

Jenner, P. M., Hagan, E. C., Taylor, J. M., Cook, E. L. \& Fitzhugh, O. G. (1964). Food Cosmet. Toxicol. 2, 327-329.
Main, P., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Maruzzella, C. J. \& Balker, J. (1959). Plant Dis. Rep. 43, 1143-1145.
Maruzzella, C. J. \& Bramnick, E. (1961). Soap Perfum. Cosmet. 34, 743-744.
Ray, S. (1986). Studies on Natural Products. PhD Thesis, pp. 192-194. Jadavpur Univ., India.
Rohmer, M., Schwartz, A. C. \& Anton, R. (1977). Phytochemistry, 16, 773-774.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1991). C47, 1426-1429

Structure of 17-Epinimbocinol

By Kalyan Das and U. C. Sinha*
Department of Physics, Indian Institute of Technology, Bombay-400 076, India
T. Mayelvaganan and S. V. Bhat
Department of Chemistry, Indian Institute of Technology, Bombay-400 076, India

and S. S. Tavale
Physical and Structural Chemistry Unit, National Chemical Laboratory, Pune-411 008, India

(Received 17 July 1990; accepted 15 October 1990)

Abstract

Hydroxy-4,4,8-trimethyl-21,23-epoxy24 -nor- $5 \alpha, 13 \alpha, 17 \beta$-chola-1,14,20,22-tetraene-3,16-

[^2]0108-2701/91/071426-04\$03.00
dione, $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{4}, M_{r}=408 \cdot 51$, m.p. $=526-528 \mathrm{~K}$, orthorhombic, $\quad P 2_{1} 2_{1} 2_{1}, \quad a=6.7094$ (9), $\quad b=$ $13 \cdot 195$ (1), $c=24 \cdot 281$ (3) $\AA, V=2149 \cdot 64 \AA^{3}, Z=4$, $D_{x}=1.262 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu=$ © 1991 International Union of Crystallography

[^0]: * This paper was presented at the National Seminar on Crystallography, BARC, India, December 1989.
 \dagger Biophysics Department.
 \ddagger Chemistry Department.
 § To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, least-squares planes, intermolecular bond contacts and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53652 (23 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

[^2]: * To whom correspondence should be addressed.

